
Secure coding and penetration
testing with sdfdsasdfas

John Bird and Julian Berton

julian.berton@owasp.org

Sponsor

Julian Berton?
● Years of web development experience
● Currently working as a security consultant
● OWASP Melbourne chapter lead

Contact
● meetup.com/Melbourne-Security-Hub/
● meetup.com/Application-Security-OWASP-Melbourne/
● @JulianBerton (Twitter - not very active)

http://www.meetup.com/Melbourne-Security-Hub/
http://www.meetup.com/Melbourne-Security-Hub/
http://www.meetup.com/Application-Security-OWASP-Melbourne/
http://www.meetup.com/Application-Security-OWASP-Melbourne/

● Years of C development experience
● Currently working as a software engineer
● Just some ‘random guy’ off the street

Contact
● I’d rather not...

John Bird

OWASP?

Link to documents:
http://bit.
ly/OWASPflagship

What they say (owasp.org):
● Not-for-profit charitable organization focused on

improving the security of software
● Make software security visible

Flagship projects:
● OWASP top 10
● OWASP Testing Guide
● OWASP Development Guide

http://bit.ly/OWASPflagship
http://bit.ly/OWASPflagship
http://bit.ly/OWASPflagship

You!
Now you know about us , its only fair we know
a bit about you :)

After tonight
● Why Node.js.
● Real world security issues with a MEAN stack.
● And how to fix them!
● Processes and tools used by penetration testers to

find vulnerabilities.

ARKpX - The Project
Goals:
● Create a proof of concept web application that implements the basic features

of their current java based secure file sharing product.
● Can this be done securely?

Contributors:
● Rick Harvey (CTO at ARKpX)
● Julian Berton (Developer)
● Ziyu Wang (Developer)
● John Bird (Happily not pictured)
● James Hamlyn-Harris (Swinburne)

Brief Architecture Overview

● All encrypted files are stored on AWS S3
● All other data is stored on Heroku servers

Things to consider...
Theoretical concept

● Browser runs JS in a sandbox
● JS is delivered over SSL
● Javascript crypto is it good enough

Dismissible problems

● Client-side Trojans
● Website spoofing
● Browser/OS vulnerabilities

Implausible attacks
● Brute force attacks

 Avoidable attacks
● SQL injection
● XSS
● CSRF
● Etc...

Node.js Refresher
● Chrome’s V8 JavaScript engine
● Single threaded
● Cross platform
● Single language
● Fast to develop

Node.js

I Hope you like callbacks...

Not only the small guys...

But Why...
● Performance (Node.js non-blocking io)
● Scalability (MongoDB)
● Quick to develop
● Add in only what you need (npm)
● One language to rule them all...

The Problem!
● Node.js is new… security folk don’t like new

things.
● Lets anyone publish a module!
● Can be easy to code insecurely in JavaScript

(eval(), etc… we’ll get back to that)

Then why did we choose it?

Why We Chose The Hipster Stack
MEAN Stack

● MongoDB - NoSQL document database
● Express - web application framework
● AngularJS - front-end HTML framework
● Node.js - Brings JavaScript to the server

http://slides.com/jbpionnier/mean-stack#/

http://slides.com/jbpionnier/mean-stack#/
http://slides.com/jbpionnier/mean-stack#/

Three Months Later...
● PoC was completed!
● Goals achieved!
● Time to harden!

DEMO

Do what we say not what we do….

● Is’nt security meant to be part of the SDLC?
● Why did we leave it till the end?

● It was a proof of concept project
● We had 3 months to prove it would work
● Business logic security took priority

http://resources.infosecinstitute.com/intro-secure-software-development-life-cycle/

Time to Harden

● Where to start?
● Top 10
● Testing guide
● Developer guide
● Various cheat

sheets

https://www.owasp.org/index.
php/Top_10_2013-Top_10

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10

Hardening Express with Helmet

https://github.com/evilpacket/helmet

https://github.com/evilpacket/helmet
https://github.com/evilpacket/helmet

Hardening Express with Helmet

https://github.com/evilpacket/helmet

https://github.com/evilpacket/helmet
https://github.com/evilpacket/helmet

Server Side JavaScript Injection

● eval() is evil…. STILL
● Same goes for settimeout()
● Just don’t use them!

MySQL queries in Node.js

What’s the difference and why?

MongoDB Database Injection

● “As a client program assembles a query in
MongoDB, it builds a BSON object, not a string.
Thus traditional SQL injection attacks are not a
problem.”

● So we are safe right?

SQL vs MongoDB Query

MySQL query

MongoDB query

Mongoose

● Gives MongoDB object
modeling and a lot more….

Find a user by ID

New Generation Injection Attacks

“The following MongoDB operations permit you to
run arbitrary JavaScript expressions directly on the
server”:

● $where
● db.eval()
● mapReduce
● group

This sounds like a
good idea!

Example

v2.4 and Above

After Bryan Sullivan’s article in
2011 called Server-Side
JavaScript Injection

MongoDB tightened security:

● Restricted the available
commands that can be run

● Can disable JavaScript from
running on the server

Storing a JavaScript Function on the Server

myAddFunction(x,y) can
now be run on the server
via a $where clause.

They do have this at the top of the page:

Cross-Site Scripting (XSS)

● ESAPI JavaScript - still in Alpha
● validator.js - does not encode to specific context
● sanitizer.js - Caja HTML Sanitizer

Mass Assignment

● Allows an attacker to assign values to model attributes
that are not meant to be changed.

● Very easy to achieve in Node.js
● Node.js has the same problem Ruby on Rails had in

early 2012

Example - Creating A User

Fixes For Mass Assignment
● mongoose-mass-assign npm plugin
● Whitelists using the pick function in Underscore

Time to Attack

● ARKpX - a different sort of pentest
○ Reconnaissance
○ Scanning
○ Exploitation
○ Maintaining Access

Reconnaissance

● OSINT - extracting information from public sources:
○ Google et al (dorks/cache)
○ Harvesting email info (theharvester)
○ Harvesting DNS info (netcraft/whois/dig)
○ Social Engineering

Scanning

● Network level scans
● Application vulnerability scanners

Scanning - network level

● Nmap
○ service/versions
○ http://nmap.online-domain-tools.com/

● OpenVAS
● Nessus
● ShodanHQ

○ http://www.shodanhq.com/search?q=mongodb
● SSL Labs

○ https://www.ssllabs.com/ssltest/

http://nmap.online-domain-tools.com/
http://nmap.online-domain-tools.com/
http://www.shodanhq.com/search?q=mongodb
http://www.shodanhq.com/search?q=mongodb
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

Starting Nmap 6.46 (http://nmap.org) at 2014-06-16 21:18 EST
Nmap scan report for XXXXXXXXXX (123.123.123.123)
Host is up (0.20s latency).
Not shown: 997 filtered ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 5.5p1 Debian 6+squeeze5 (protocol 2.0)
25/tcp open smtp Exim smtpd 4.72
993/tcp open ssl/imap Dovecot imapd
Warning: OSScan results may be unreliable because we could not
find at least 1 open and 1 closed port
Device type: general purpose
Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_kernel:2.6
OS details: Linux 2.6.18
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Redacted

87294 hits

Scanning - application level

● Intercepting proxies
○ Burpsuite
○ OWASP-ZAP

● Platform specific tools
○ wpscan
○ joomscan
○ sqlmap

● PunkSPIDER
http://punkspider.hyperiongray.com/

http://punkspider.hyperiongray.com/
http://punkspider.hyperiongray.com/

http://antmanaras.wordpress.com/2012/12/30/tutorial-scan-a-wordpress-website-with-wpscan-part-1-basic-scan/wpscan/

Scanning - using wpscan

http://antmanaras.wordpress.com/2012/12/30/tutorial-scan-a-wordpress-website-with-wpscan-part-1-basic-scan/wpscan/
http://antmanaras.wordpress.com/2012/12/30/tutorial-scan-a-wordpress-website-with-wpscan-part-1-basic-scan/wpscan/

Exploitation

● User enumeration
● Brute-forcing passwords
● ClickJacking/UI redressing
● Borken crypto
● Code injection
● CSRF
● Attacking the DB

Exploitation - user enumeration

● Identifying valid usernames
● Allows attacker to guess password
● Can gives attacker email address for

○ Social Engineering attacks
○ Useful for other attacks

Exploitation - brute forcing passwords

● Password reuse is still widespread
○ Good number of dumps to choose from

● Users are not particularly imaginative about passwords
● Password policies can actually help attackers

○ Helps guess the pattern users will select for their
password

root@kali:~/# hydra -t 4 -l bob@thebuilder.net -V -P common_passwords.txt 123.123.123.123 \ http-form-
post "/login/log.php:user=^USER^&password=^PASS^:S=success"
Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only
Hydra (http://www.thc.org/thc-hydra) starting at 2014-04-09 00:00:00
[DATA] 4 tasks, 1 server, 935 login tries (l:1/p:935), ~233 tries per task
[DATA] attacking service http-post-form on port 80
[ATTEMPT] target 123.123.123.123 - login "bob@thebuilder.net" - pass "Admin" - 1 of 935 [child 0]
[ATTEMPT] target 123.123.123.123 - login "bob@thebuilder.net" - pass "Administration" - 2 of 935 [child 1]
<SNIP>
[ATTEMPT] target 123.123.123.123 - login "bob@thebuilder.net" - pass "youradmin" - 13 of 935 [child 1]
[80][www-form] host: 123.123.123.123 login: bob@thebuilder.net password: yourpass
1 of 1 target successfully completed, 1 valid password found

Exploitation - using hydra

Exploitation - ClickJacking/UI redressing

● Originally considered ‘just a prank’
● Requires user interaction

○ Shall we play a game?
○ Drag the iPad to win!
○ The only way to win is not to play

● The JS ‘fix’ doesn’t work if JS is disabled
● set X-Frame-Options

○ DENY
○ SAMEORIGIN

“What it actually did, though, was put your Twitter home page on top of the button as a frame, with an opacity of
0 in the CSS.” - http://www.smashingmagazine.com/2010/01/14/web-security-primer-are-you-part-of-the-problem/

http://www.smashingmagazine.com/2010/01/14/web-security-primer-are-you-part-of-the-problem/

Exploitation - Borked crypto

● Attack SSL/TLS crypto
○ mitm-proxy/sslstrip attacks

● Attack JS crypto
○ Often considered as ‘bad’
○ On web crypto:

“A significant portion of that crypto has been implemented in
Javascript, and is thus doomed.”
http://matasano.com/articles/javascript-cryptography/

● I could not fault it - but thats not saying much
● attacks get better - not worse

http://matasano.com/articles/javascript-cryptography/
http://matasano.com/articles/javascript-cryptography/

Exploitation - Borked crypto

● “What's hard about deploying JS over SSL/TLS?”
“You can't simply send a single Javascript file over SSL/TLS. You have to

send all the page content over SSL/TLS. Otherwise, attackers will hijack
the crypto code using the least-secure connection that builds the page.”

 http://matasano.com/articles/javascript-cryptography/

● Chicken & Egg problem
○ Everything over https

● Use HSTS - HTTP Strict Transport Security
○ “declares that complying user agents (such as a web browser) are to

interact with it using only secure HTTPS connections”
○ ‘Somewhat’ addresses the issue

http://matasano.com/articles/javascript-cryptography/
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/HTTPS

Exploitation - Injection

● XSS
○ ImmuiWeb Self-Fuzzer

https://addons.mozilla.org/en-US/firefox/addon/immuniweb-self-fuzzer/

○ XSSer
○ BeEF

http://beefproject.com

● SSJS - Node.js
● NoSQL

https://addons.mozilla.org/en-US/firefox/addon/immuniweb-self-fuzzer/
https://addons.mozilla.org/en-US/firefox/addon/immuniweb-self-fuzzer/
http://beefproject.com
http://beefproject.com

Exploitation - Node.js

● Demo time
eval()

http://asfws12.files.wordpress.com/2012/11/node_security_presentation_v3_asfws.pdf

http://asfws12.files.wordpress.com/2012/11/node_security_presentation_v3_asfws.pdf
http://asfws12.files.wordpress.com/2012/11/node_security_presentation_v3_asfws.pdf

Exploitation - Node.js

● Vulnerabilities happen
○ http://blog.nodejs.org/vulnerability/

● Node.js runs often runs as root to open port 80* (clarified post talk)

○ Drop privs back to sudo user on start
var uid = parseInt(process.env.SUDO_UID);
if (uid) process.setuid(uid);

○ Use iptables -> remap port #
iptables -t nat -A PREROUTING -i eth0 -p TCP \

--dport 80 -j REDIRECT --to-port 8080

○ use ‘setcap’
sudo setcap cap_net_bind_service=+ep /usr/bin/node

http://blog.nodejs.org/vulnerability/
http://blog.nodejs.org/vulnerability/

Exploitation - CSRF

● Express makes Anti-CSRF fairly easy
● Look for forms without the hidden field named ‘_csrf’

 In the app.configure():
 app.use(express.cookieParser());
 app.use(express.session({ secret: "ub3rS3cr3tP@ssw0rd!" }));
 app.use(express.csrf());

 And in the form template:
 input(type='hidden', name='_csrf', value=token)

http://sporcic.org/2012/06/csrf-with-nodejs-and-express/

http://sporcic.org/2012/06/csrf-with-nodejs-and-express/
http://sporcic.org/2012/06/csrf-with-nodejs-and-express/

Exploitation - Attacking DB

● MongoDB
○ As already discussed - versions prior to 2.4 had

‘interesting’ injection vectors
○ Still mostly insecure ‘by default’

Exploitation - great MongoDB quotes

● “By default, MongoDB programs (i.e. mongos and mongod) will
bind to all available network interfaces (i.e. IP addresses) on a
system.”

● “MongoDB does not enable authorization by default.”
● “The default distribution of MongoDB does not contain support for

SSL.”
● On the HTTP interface:

○ “The status interface is read-only by default, and the default
port for the status page is 28017. Authentication does not
control or affect access to this interface.”

○ “Disable this interface for production deployments.”
http://docs.mongodb.org/manual/security/

http://docs.mongodb.org/manual/reference/program/mongos/#bin.mongos
http://docs.mongodb.org/manual/reference/program/mongos/#bin.mongos
http://docs.mongodb.org/manual/reference/program/mongod/#bin.mongod
http://docs.mongodb.org/manual/reference/program/mongod/#bin.mongod
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/security/
http://docs.mongodb.org/manual/security/

Exploitation - more MongoDB quotes

Password Hashing Insecurity
In version 2.2 and earlier:
● the normal users of a database all have access to the system.users

collection, which contains the user names and a hash of all user’s
passwords.

● if a user has the same password in multiple databases, the hash will be
the same on all database. A malicious user could exploit this to gain
access on a second database use a different users’ credentials.

http://docs.mongodb.org/v2.2/tutorial/control-access-to-mongodb-with-authentication/#password-hashing-insecurity

http://docs.mongodb.org/v2.2/tutorial/control-access-to-mongodb-with-authentication/#password-hashing-insecurity
http://docs.mongodb.org/v2.2/tutorial/control-access-to-mongodb-with-authentication/#password-hashing-insecurity

Exploitation - MongoDb

● msf > use auxiliary/scanner/mongodb/mongodb_login

Securing MongoDB
Given the lack of security with mongodb with the default install, basic security
hardening best practices should include:

1. Disabling the default status page – using the ‘nohttpinterface’ option to turn off the 28017 port.
2. Use a different port – using the ‘port’ option
3. Do not enable REST in production environments – don’t use ‘rest’ option
4. Bind the mongodb process to only one interface/IP – using the ‘bind_ip’
5. Don’t run mongodb daemon as root
6. Disable anonymous access – using the ‘auth’ option
7. Encrypt data - “To support audit requirements, you may need to encrypt data stored in MongoDB.

For best results you can encrypt this data in the application layer, by encrypting the content of
fields that hold secure data.”

8. Encrypt communication – Recommended to use SSL

http://blog.spiderlabs.com/2013/03/mongodb-security-weaknesses-in-a-typical-nosql-database.html

http://blog.spiderlabs.com/2013/03/mongodb-security-weaknesses-in-a-typical-nosql-database.html
http://blog.spiderlabs.com/2013/03/mongodb-security-weaknesses-in-a-typical-nosql-database.html

Pro tips on staying anonymoose

● VPN
● Tor proxy
● Whonix-Gateway

○ https://www.whonix.org/
● McDonalds™ Wifi + ‘Big-MAC’ changer ;-)

https://www.whonix.org/
https://www.whonix.org/

● https://nodesecurity.io/

Want to learn more?

Want to learn more?
● https://nodegoat.herokuapp.com/tutorial
● https://github.com/OWASP/NodeGoat

https://nodegoat.herokuapp.com/tutorial
https://nodegoat.herokuapp.com/tutorial
https://github.com/OWASP/NodeGoat
https://github.com/OWASP/NodeGoat

References
● https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
● https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
● http://nodesecurity.io/
● http://asfws12.files.wordpress.com/2012/11/node_security_presentation_v3_asfws.pdf
●

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
http://nodesecurity.io/
http://nodesecurity.io/
http://asfws12.files.wordpress.com/2012/11/node_security_presentation_v3_asfws.pdf
http://asfws12.files.wordpress.com/2012/11/node_security_presentation_v3_asfws.pdf

